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Abstract. Changing precipitation patterns resulting from climate change are likely to affect the 9 
future availability of freshwater resources. Coastal aquifers are especially vulnerable to such 10 
changes in the form of contamination via the intrusion of saltwater as sea level rises. In Casco 11 
Bay, Maine, the population depends largely on groundwater from private wells as a source of 12 
freshwater. Thus, assessing the vulnerabilities of coastal and island aquifers to saltwater intrusion 13 
influenced by climate change is important. This study examines the aggregate effects of sea level 14 
rise, changing precipitation patterns, and population shifts (well pumping rate) on the depth of 15 
the freshwater-saltwater interface. Well vulnerability to these changes is determined by 16 
comparison of average well depth to the resulting interface depth. Although vulnerabilities of 17 
individual wells are difficult to predict given that hydraulic properties are governed by complex 18 
fracture patterns, this preliminary model demonstrates a representative response of bedrock 19 
aquifers of Casco Bay to climate and population stresses. This study finds that changing 20 
precipitation patterns have the greatest effect on interface depth variations, exceeding those 21 
caused by sea level rise. Wells near shore where the interface is the shallowest are particularly 22 
vulnerable to contamination by saltwater intrusion and should be considered vulnerable even 23 
under best-case conditions.  In multiple climate change scenarios, the saltwater-freshwater 24 
interface decreases in depth, indicating greater vulnerability to contamination over time for 25 
populations reliant on groundwater from bedrock aquifer wells. 26 
 27 
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1. Introduction  31 
The changing climate has cast into focus the importance of the future availability of freshwater 32 
resources (Ferguson and Gleeson 2012; Milly et al. 2005; Vorosmarty et al. 2000). Fluctuating 33 
regional populations, coupled with changing weather patterns, alter demand and supply limiting 34 
the availability future freshwater resources. In areas such as coastal Maine, where the population 35 
is largely dependent upon groundwater extracted from fractured, confined bedrock aquifers, 36 
changing precipitation patterns are expected to have significant impacts on the amounts of 37 
subsurface freshwater (Caswell 1979). Specifically, sea level rise will alter aquifer hydraulic 38 
gradients.  Changing rates of precipitation will result in changing rates of aquifer recharge, which 39 
will in turn have an effect on the flow of groundwater through aquifer systems. In the area of 40 
Casco Bay, Maine (Figure 1), where island and peninsular wells are predominantly drilled into 41 
confined bedrock aquifers, these changes become especially important due to networks of 42 
fractures that serve as conduits for both freshwater and saltwater to flow into and out of the 43 
aquifer. Changes in flow patterns due to rising sea levels and changing rates of recharge can 44 
result in the inward flow of saltwater from the sea into the aquifer, effectively contaminating the 45 
freshwater resource.  46 
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 47 
Saltwater intrusion poses a great risk to the residents of coastal Maine due to its relative 48 
permanence and difficulty to reverse, especially for communities in which aquifers provide the 49 
sole source of drinking water (Tuttle 2007). Coastal areas analogous to Casco Bay have been 50 
observed to experience intrusion (Caswell 1979; Tuttle 2007) and are likely to become more 51 
vulnerable due to the effects related to climate change. A preliminary analysis of saltwater 52 
intrusion risk from sea level rise in Casco Bay, Maine finds that the hydraulic gradient weakens 53 
with sea level rise to the point of becoming negative, at which point saltwater flows inward and 54 
contaminates the aquifer, demonstrating the vulnerability of these coastal aquifers to saltwater 55 
intrusion due to sea level rise. This further analysis uses the United States Geology Survey 56 
MODFLOW-2005 program (Harbaugh 2005) to simulate groundwater flow for an example 57 
Casco Bay bedrock aquifer and to assess the likelihood of saltwater intrusion of wells under 58 
three different influences: 1) sea level rise 2) changing rates of aquifer recharge under the worst 59 
case (8.5 W m-2 radiative forcing by 2011) Representative Concentration Pathway Scenario 60 
(RCP 8.5) precipitation projections, and 3) changing pumping rates due to population shifts.  61 
 62 
2. Background  63 
2.1 Confined Bedrock Aquifers  64 
Approximately 40% of Maine’s population depends on groundwater for residential use (Caswell 65 
1979). Residents of the islands and peninsulas in Casco Bay rely predominantly on groundwater 66 
supplied by wells drilled into fractured, confined bedrock aquifers, the characteristics of which 67 
are significant factors affecting the subsurface flow. A map of the private confined bedrock 68 
aquifer wells in the Casco Bay area can be seen in Figure 2. A confined aquifer is defined as 69 
bedrock overlain by thick permeable soils or pervious bedrock with no soil that is fully saturated 70 
with water under pressure (Bobba 1993). Confined bedrock aquifers exist only where rock is 71 
fractured and capable of holding water. Flow of groundwater in such aquifers is slow, and its 72 
recharge occurs through regular precipitation.  73 
 74 
Freshwater in coastal aquifers such as those in Casco Bay, where islands and peninsulas are 75 
surrounded by saltwater, exists as a lens that floats above the saltwater in isostatic equilibrium, a 76 
schematic of which is shown in Figure 3 (modified from Caswell 1979). The depth of the 77 
saltwater-freshwater interface varies seasonally and depends upon climatic conditions, flow 78 
within the system, and the extent of groundwater extraction, and is related to the height of the 79 
water table elevation by the density ratio of freshwater to saltwater, given by the Ghyben-80 
Herzberg approximation (Herzberg 1901; Ghyben 1889): 81 
 82 

  z=
ρf

ρs-ρf
h=αh       (1) 83 

 84 
where z = z(x) is the depth of the freshwater-saltwater interface below mean sea level [m], ߩ௙ is 85 
the fresh water density [kg/L], ߩ௦ is the saltwater density [kg/L], and h = h(x) is the water table 86 
elevation above mean sea level [m] (Werner and Simmons 2009). This ratio is generally 87 
considered to be 40:1, meaning that for every meter of freshwater in the aquifer above sea level 88 
the lens extends 40 meters below sea level. Correspondingly, for every meter of water drawdown 89 
caused by pumping, there is an upwelling of the saltwater-freshwater interface of 40 meters. Due 90 
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to this relationship, Ferguson and Gleeson (2012) find that such coastal aquifers are more 91 
vulnerable to saltwater intrusion due to groundwater extraction than to predicted sea level rise.  92 
 93 
Saltwater intrusion into coastal bedrock aquifers occurs where significant freshwater-bearing 94 
fractures, typically associated with faults, intersect large fractures that cut across the land and 95 
extend to the ocean (Caswell 1987). These fractures provide saltwater with a path to reach the 96 
freshwater stored in bedrock aquifers. Under the conditions of a negative hydraulic gradient, 97 
saltwater flows inward from the ocean through these fractures resulting in the migration of the 98 
freshwater-saltwater boundary inwards and the consequent contamination of bedrock aquifer 99 
wells. It has been shown by Masterson (2004) that for Cape Cod aquifers from years 1921 to 100 
2000, the hydraulic gradient weakens with sea level rise, assuming the water table elevation does 101 
not change.  In the generalized case study of Werner and Simmons (2009), a similar result was 102 
found for head-controlled aquifer systems. 103 
 104 
2.2 Geologic Setting 105 
Bedrock in the Harpswell area of Casco Bay consists primarily of metamorphic stratified 106 
schistose and granofelsic rocks, predominantly from two geologic formations: the Sebascodegan 107 
Formation, a thin-bedded quartz-plagioclase-biotite granofels and gneiss, and the Cape Elizabeth 108 
Formation, a thin-bedded siliceous and sericitic slate with beds of greywacke slate and schist 109 
(Hussey 1985; Hussey and Marvinney 2002). These geologic units were heavily deformed and 110 
metamorphosed at great depths and pressures during the continental collision that formed the 111 
Appalachians, resulting in extensive regional faulting and folding, which contributes greatly to 112 
the presence of fractures that control groundwater flow in coastal aquifers. Two major oppositely 113 
striking thrust faults of moderate dip (~80°) run roughly N-S through Sebascodegan Island, and 114 
are coincident with major topographic features and foliation, and are likely related to many of the 115 
water bearing fractures in the area (Hussey 1985; Caswell 1979). Sand, gravel, and 116 
unconsolidated sediments of varying thickness deposited during the last glacial period cover 117 
much of Casco Bay. On Sebascodegan Island the surficial materials are predominantly less than 118 
one meter of glacial drift covering bedrock or a thin deposit of poorly sorted till. 119 
 120 
3. Methods 121 
In order to quantify the effect of sea level rise on the vulnerability of Casco Bay’s island bedrock 122 
wells to saltwater intrusion, a model of groundwater flow for a hypothetical representative island 123 
aquifer was configured using the modular finite-difference groundwater flow model 124 
(MODFLOW) developed by the United States Geological Survey (USGS; McDonald and 125 
Harbaugh 1988). This model is the most widely used in the world for simulating groundwater 126 
flow and has been validated extensively since its publication in 1988 (US Geological Survey 127 
1997). MODFLOW-2005 models the three-dimensional flow of groundwater of constant density 128 
through porous material based on the partial differential equation (Harbaugh 2005) 129 
 130 ఋఋ୶ ቀܭ୶୶ ఋ௛ఋ୶ቁ + ఋఋ୷ ቀܭ௬௬ ఋ௛ఋ୷ቁ + ఋఋ୷ ቀܭ୸୸ ఋ௛ఋ௭ቁ +ܹ = ܵ௦ ఋ௛ఋ௧    (2) 131 

 132 
where Kxx, Kyy, and Kzz are the hydraulic conductivities in the x, y, and z, directions [L/T]; h is 133 
the potentiometric head [L]; W is the volumetric flux per unit volume [T-1], Ss is the specific 134 
storage of the material [L-1]; and t is time [T]. MODFLOW-2005 uses the finite-difference 135 
method to obtain approximate analytical solutions to obtain time-varying head distributions that 136 
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can be used to characterize the flow system and to calculate the direction and rate of groundwater 137 
flow. 138 
 139 
The SWI2 package (Bakker et al. 2013) for MODFLOW was added to simulate seawater 140 
intrusion into the aquifer allowing for three-dimensional vertically integrated variable-density 141 
groundwater flow analysis. The SWI2 package models variable-density flow in an isotropic 142 
aquifer, based on Darcy’s law for variable-density flow, which can be written as (Post et al. 143 
2007; Bakker et al. 2013) 144 
୶ݍ 145  = ܭ− ఋ௛౜ఋ୶ ୷ݍ   = ܭ− ఋ௛౜ఋ୷ ୸ݍ   = ఋ௛౜ఋ୸)ܭ− +  146 (3)   (ݒ

 147 
where qx, qy, and qz are the specific discharge components in the x, y, and z directions [L/T]; K is 148 
the freshwater hydraulic conductivity [L/T]; hf is the freshwater head [L], and v is the 149 
dimensionless density [unitless]. The SWI2 package allows for the effects of density differences 150 
to be incorporated into MODFLOW-2005, and uses the Dupuit approximation in which an 151 
aquifer is vertically discretized into zones of differing densities. Derivations of Eqn (1-2) can be 152 
found in Rushton and Redshaw (1979) and Bakker et al. (2013), respectively. This model does 153 
not consider variations in viscosity and the effects of dispersion and diffusion. The user interface, 154 
ModelMuse Version 3, (Winston 2014) was used as a pre-and post-processing tool for the 155 
simulation.  156 
 157 
Casco Bay aquifers are represented in MODFLOW using a representative island, Sebascodegan 158 
Island. The island includes a specified flux boundary to which a recharge rate is applied. The 159 
island aquifer is surrounded by ocean extending offshore along all sides that is represented in 160 
MODFLOW by a General Head Boundary (GHB) condition in model layer one with an altitude 161 
set to the current sea level, after Bjerklie et al. (2012). To simulate gradual sea level rise, 162 
constant heads are increased at yearly intervals at the rate of projected sea level rise. 163 
 164 
The model domain is discretized into a finite-difference grid of 101 columns and 120 rows, with 165 
cell sizes measuring 75 by 100 m. The upper surface of the model corresponds to the surface 166 
elevation provided by elevation contours of Sebascodegan Island. The hypothetical aquifer 167 
consists of two layers: a thin unit of unconsolidated gravelly glacial drift overlaying a confined 168 
layer of fractured crystalline bedrock that extends to 400 m below sea level. The bottom of the 169 
model is defined as a no flow boundary. 170 
 171 
The model was designed to simulate the effects of sea level rise on the island’s coastal aquifer 172 
for the years 2000-2070, incorporating the effects of changing precipitation and recharge rates, 173 
as well changing pumping rates associated with population changes. After establishing a steady-174 
state condition, the model was used to simulate hypothetical scenarios of long-term change in sea 175 
level and aquifer recharge under Representative Concentration Pathway 8.5 (RCP 8.5), the worst 176 
case scenario achieving a climate forcing of 8.5 W m-2 by 2100. Two sea level rise scenarios 177 
were also considered, which assumed a global sea level rise of one meter and two meters, 178 
respectively, over the next century. 179 
 180 
A total of 270 years was simulated, using one preliminary stress period of 200 years to establish 181 
current, steady-state aquifer conditions, and the following 70 years to simulate aquifer 182 
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development under projected changes in sea level and recharge. Storage changes between 183 
aquifers were not considered, and all stress periods are steady-state. 184 
 185 
3.1. Data Sets 186 
Geologic, hydrologic, climactic, and population data are based on observations and projections 187 
for Sebascodegan Island and are presumed to be representative of regional island aquifer 188 
conditions. The following data sets are used as those inputs to the model.  189 
 190 
3.1.1. Sea Level Rise 191 
Sea level rise estimates are based on those of the National Oceanic and Atmospheric 192 
Administration for the United States National Climate Assessment (National Climate 193 
Assessment 2014), which indicate a “greater than 90% chance” that global mean sea level will 194 
rise at least 0.2 meters and no more than 2.0 meters by 2100. 195 
 196 
3.1.2. Precipitation and Recharge 197 
Precipitation data (Appendix Figure 8) used to calculate aquifer rate of recharge (Figure 4) are 198 
cumulative monthly values at 4 km resolution from the Weather Research and Forecasting 199 
(WRF) model dynamically downscaled from Community Earth System Model, Version 1.0 200 
(CESM1) projections at 1 x 1.25 degree spatial resolution under RCP 8.5. The CESM simulation, 201 
output at 3-hourly intervals, is an ensemble member of the Coupled Model Intercomparison 202 
Project, Version 5 (CIMP5) (Gao et al. 2012).  Recharge is calculated as 7.95% of precipitation 203 
(Gerber and Hebson 1996).  Base-case and 2050 recharge rates were calculated for the 204 
simulation, and intermediate years were interpolated from these data.  205 
 206 
3.1.3. LandScan Population Projections and Pumping Rates 207 
The LandScan and LandCast data sets at one kilometer resolution were created using a multi-208 
variable dasymetric modeling approach along with spatial data and imagery analysis 209 
technologies to disaggregate census counts within administrative boundaries at the town, county, 210 
and state levels (http://web.ornl.gov/sci/landscan/ landscan_documentation.shtml). LandCast 211 
2050 population projections (McKee et al. 2015) incorporate the cohort-component methodology 212 
outlined by the U.S. Census along with urbanization/land cover conversion projections. 213 
Population from these data sets is then aggregated to the census tract (Appendix Figure 9) to 214 
provide proxy communities supplied by individual private wells. 215 

 216 
Pumping rates were calculated based on a 51 gallons per capita day (gpcd) estimate of Maine 217 
public water usage presented by Kenny et al. (2009) and multiplied by projected populations for 218 
Sebascodegan Island for 2004 and 2050. Since the vast majority of pumping in the region is from 219 
private bedrock wells (Caswell 1979), this is an appropriate estimate. Wells were simulated 220 
using the WEL package in MODFLOW, pumping at a depth of 60 m, an average depth of 221 
bedrock wells in the region (Caswell 1979; Loiselle and Evans 1995). 222 
 223 
3.1.4. Hydraulic Properties and Boundary Conditions 224 
Aquifer properties, (Appendix Table 2), were assigned based on previously measured data and 225 
generalized surficial and bedrock geology of the Casco Bay area. The unit comprising layer one 226 
is separated into two units (Appendix Figure 7B): fine-grained glaciomoraine deposits 227 
(Presumpscot Formation) and glacial till. Surficial materials have various thicknesses 228 
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interpolated from the overburden thickness of island wells. Horizontal hydraulic conductivity for 229 
the Presumpscot Formation and glacial till is 0.00189 and 1.122 m/d, respectively (Brainerd et al. 230 
1996; Morrissey (1983). Vertical Hydraulic conductivity of the Presumpscot Formation is 8.23 × 231 
10-6 m/d (Nielsen et al. 1995).  232 
 233 
Model layer two represents heterogeneous anisotropic crystalline fractured metamorphic bedrock 234 
where hydraulic conductivity can vary over at least six orders of magnitude (Johnson 1999). 235 
However, Shapiro (2002) shows that at large enough scales, bulk bedrock aquifer properties may 236 
be used to infer regional distributions of groundwater. While complex fracture networks govern 237 
hydraulic conductivity at small scales, on scales larger than 100 m the effective hydraulic 238 
conductivity of the bedrock is more strongly controlled by the larger fracture network and bulk 239 
hydraulic properties. Furthermore, Loiselle and Evans (1995) find that in the region of study, 240 
fracture permeability remains uniform with depth, validating the use of bulk hydraulic properties 241 
for a large-scale model. Thus, layer two is modeled as a homogeneous isotropic layer with a 242 
hydraulic conductivity of 0.277 m/d, based on a range of estimates made by Johnson (1999) on 243 
similar fractured bedrock. No hydrogeological data was available for the specific bedrock units 244 
considered in this study.  245 
 246 
As a result of these generalizations, this model must be considered preliminary and requires 247 
further, site-specific hydrogeological studies to better constrain the findings of this study. 248 
Further, the complex nature and spatial heterogeneity of hydraulic properties of fractured 249 
bedrock aquifers limits the ability of this model to predict vulnerability of wells on an individual 250 
scale. Rather, this model serves primarily to predict aquifer lens depth at a larger scale and its 251 
response to changes relating to climate and population shifts. 252 
 253 
4. Results and Discussion 254 
Ten scenarios, shown in Table 1, were simulated using the model. These included a “best” and 255 
“worst” case scenario, in order to demonstrate the potential range of responses for the aquifer. 256 
The simplest three scenarios demonstrate the individual effects of zero, one, and two meters sea 257 
level rise with pumping and recharge rates held constant. An additional three scenarios 258 
incorporate projected changes in recharge and pumping rates with the assumed zero, one, and 259 
two meters sea level rise. The final two scenarios consider high and low rates of recharge, with 260 
sea level constant at current sea level and pumping absent. After each simulation, the depth of 261 
the saltwater-freshwater interface was compared to the average well depth (60 m) to determine 262 
saltwater contamination vulnerability. Where the interface depth is shallower than the average 263 
well depth, that well location is considered vulnerable to saltwater intrusion.  264 
 265 
Figure 5 shows the depths of the saltwater-freshwater interface for a cross section of the island 266 
under multiple scenarios. In a best case scenario (Figure 5B) assuming no sea level rise, highest-267 
possible recharge rate, and lowest-possible pumping rate, the depth of the interface is up to 21 m 268 
deeper than the worst case scenario that assumes two meters sea level rise by 2100, lowest 269 
possible recharge rate, and highest possible pumping rate. Figure 5C shows the projected 270 
interface depths for a cross section of the island based on projected changes in recharge and 271 
pumping rates under three possible sea level rise scenarios (zero, one, and two meters by 2100). 272 
The effect of sea level rise can be seen as the depth of the lens decreases by as much as 14 m 273 
between  zero and two meters sea level rise scenarios.  274 
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 275 
In scenarios 3-4 and 8-10, which examine the individual effects of sea level rise and recharge, 276 
respectively, this study finds that recharge rate has a more significant effect on interface depth 277 
than that of projected sea level rise. Also, while pumping does have an effect on the depth of the 278 
interface, the rate of pumping occurring at private wells is only enough to cause minor 279 
upwellings in the interface. Such an upwelling can be seen in Figure 5C. Thus, over-pumping at 280 
private wells is not likely to be a leading contributor to saltwater intrusion, compared to other 281 
coastal regions where over-pumping from groundwater wells is the primary cause of saltwater 282 
intrusion (Barlow and Reichard 2010). 283 
 284 
To determine the vulnerability of individual wells given changes in the saltwater-freshwater 285 
interface of the model Sebascodegan Island, geospatially located model wells (Figure 6) of 286 
representative depth were used in the simulation. In the best case scenario (Figure 6A), 13 of the 287 
168 total model wells were below the saltwater-freshwater interface (contaminated), assuming an 288 
average well depth of 60 m. In the worst case scenario (Figure 6B), the number of contaminated 289 
wells was 19. In the climate projection assuming zero meters sea level rise (Figure 6C), 14 wells 290 
were contaminated. In the climate projection assuming two meters sea level rise (Figure 6D), 15 291 
wells were contaminated.  292 
 293 
This study finds that wells close to shore, where the interface is shallowest, are particularly 294 
vulnerable to contamination by saltwater intrusion and should be considered vulnerable even 295 
under best-case conditions. With increasingly severe climate change scenarios, the overall depth 296 
of the interface decreases, increasing the likelihood of saltwater intrusion into wells. In possible 297 
climate change scenarios 5-7 the saltwater-freshwater interface decreases in depth, indicating 298 
increased vulnerability to contamination over time for populations reliant on groundwater from 299 
bedrock wells. Although individual well vulnerability is difficult to predict given hydraulic 300 
properties are governed by complex fracture patterns, this preliminary model is useful in 301 
demonstrating the response of bedrock aquifers to climate and population stresses.  302 
 303 
It must be stressed that results of this preliminary model demonstrate the only the generalized 304 
qualitative response of a coastal bedrock aquifer in Casco Bay to population shifts and the 305 
precipitation and sea level changes accompanying climate change.  The heterogeneous and 306 
complex nature of the bedrock in question can contribute to hydraulic properties varying over 307 
many orders of magnitude, variations that can significantly impact models of this kind.  In order 308 
to better constrain modeling parameters and thus gain more detailed information regarding the 309 
vulnerability of specific aquifers, site-specific hydrogeologic data is needed for the bedrock and 310 
surficial materials in the region.  Improving and localizing estimates of hydraulic properties will 311 
serve to paint a more accurate picture of the vulnerability of these aquifers. 312 
 313 
5. Conclusions 314 
This study finds that climate change projections indicate increased annual precipitation (although 315 
mostly in the form of larger extreme events) for the islands in the Casco Bay area. Coupled with 316 
a projected decrease in population, and therefore a decrease in private pumping rates, this change 317 
seems unlikely to put freshwater wells drawing from confined bedrock aquifers at risk. However, 318 
the effects of sea level rise could serve to decrease the depth of the interface to the point at which 319 
risk is increased for some wells. Thus, although mitigated by a projected increase in precipitation 320 
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amounts for the northeast, a rise in sea level causes significant shallowing of the saltwater-321 
freshwater interface, and the sum total of the effects climate change could contribute to the 322 
possible contamination of some private wells. While individual well vulnerability is difficult to 323 
predict given the complex and heterogeneous nature of fractured bedrock, deep wells that are 324 
close to shore are most at risk for contamination, and should be considered especially vulnerable 325 
to this long term consequence of climate change. 326 
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No. Scenario 
Sea Level 

Start 
(m) 

Sea Level 
End 
(m) 

Recharge 
Start 
(m/d) 

Recharge Start 
(m/d) 

Pumping 
Rate Start 

(m3/d) 

Pumping 
Rate End 

(m3/d) 
1 Worst Case 2 2 0.000282795 0.000282795 -3.175 -3.175 
2 Best Case 0 0 0.000356452 0.000356452 -2.75 -2.75 
3 High Recharge 0 0 0.000282795 0.000282785 0 0 
4 Low Recharge 0 0 0.000356452 0.000356452 0 0 
5 Projection 1 (2 m sea level rise) 0 2 0.000282795 0.000356452 -3.175 -2.75 
6 Projection 2 (1 m sea level rise) 0 1 0.000282795 0.000356452 -3.175 -2.75 
7 Projection 3 (0 m sea level rise) 0 0 0.000282795 0.000356452 -3.175 -2.75 
8 0 m Sea Level Rise 0 0 0.000282795 0.000282795 -3.175 -3.175 
9 1 m Sea Level Rise 0 1 0.000282795 0.000282795 -3.175 -3.175 
10 2 m Sea Level Rise 0 2 0.000282795 0.000282795 -3.175 -3.175 

Table 1 Model Scenarios 
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 643 
 644 
Table 2 Hydraulic Properties of Aquifer Materials 645 

 646 
 647 
 648 
 649 
 650 
 651 

 652 

 653 

 654 

 655 

Geologic Material Layer 
Horizontal Hydraulic 

Conductivity 
(Kx, m/day) 

Vertical Hydraulic 
Conductivity 
(Kz, m/day) 

Source 

Presumpscot Formation 1 0.001889 8.23*10-6* Brainerd et al., 1996; *Nielsen et al., 
1995 

Till 1 1.121 1.21 Morrissey, 1983 

Fractured Metamorphic 
Crystalline Bedrock 

2 0.277 0.277 Johnson, 1999 


